Warsaw University of Technology

COURSE OFFERED IN THE DOCTORAL SCHOOL

Code of the course		4606-ES-0000EHI-0108		Name of the course		Polish	Modelowanie spalania turbulentnego		
						English	Modelling of turbulent combustion		
Type of the course		speciality subje	ct						
Course coordinator		Prof.dr hab.inż. Andrzej Teodorczyk							
Implementing unit	nplementing unit Faculty of Power and Aeronautical Engineering Scientific discipline / disciplines* Aronautical Engineering / Environmental Engineering and Power Engineering / Chemical Engineering								
Level of education		docto	oral		Semester		summer		
Language of the cour	se	English							
Type of assessment	:	Passing with	the grade	N	umber of hours in a semester	30	ECTS credits	2	
Minimum number of participants		12		Ν	Aaximum number of participants	50	Available for studen (MSc)	ts Yes/ No	
Type of c	lasses		Lecture		Auditory classes	Project classes	Laboratory	Seminar	
Number of hours		in a week a semester	2 30						

* does not apply to the Researcher's Workshop

1. Prerequisites

Thermodynamics, combustion, fluid mechanics and numerical methods

2. Course objectives

knowledge and skills in the field of theoretical and numerical modeling of laminar, turbulent and detonative combustion

	Lecture
1.	Introduction – 1h
1.	Fundamentals of turbulent flow – 3h
	2.1. Definition of turbulence
	2.2. Turbulence formation
	2.3. Statistical concepts of turbulence
	2.4. 3D spectrum of turbulence
	2.5. Dynamics of vorticity and energy cascade
	2.6. Influence of density changes on vorticity and turbulence
	2.7. Transport processes in turbulent flow
2.	Conservation equations for reacting flows – 2h
	3.1. General forms
	3.2. Simplified forms
1.	Laminar premixed flames – 3 h
	4.1. Conservation equations and numerical solutions
	4.2. Steady 1D flames
	4.3. Theoretical solutions
	4.4. Flame thickness
	4.5. Flame stretch
	4.6. Flame speeds

- 4.7. Instabilities of laminar flame fronts
- 2. Laminar diffusion flames 3h
 - 5.1. Theoretical tools
 - 5.2. Flame structure for infinitely fast chemistry
 - 5.3. Full solutions for infinitely fast chemistry
 - 5.4. Real diffusion flames
- 3. Introduction to turbulent combustion 4h
 - 6.1. Interaction between flames and turbulence
 - 6.2. Computational approaches to turbulent combustion
 - 6.3. RANS simulations
 - 6.4. DNS simulations
 - 6.5. LES simulations
 - 6.6. Chemistry for turbulent combustion
- 4. Turbulent premixed flames 4h
 - 7.1. Turbulent premixed flames regimes
 - 7.2. RANS of turbulent premixed flames
 - 7.3. LES of turbulent premixed flames
 - 7.4. DNS of turbulent premixed flames
- 8. Turbulent non-premixed flames 4h
 - 8.1. Turbulent non-premixed flames regimes
 - 8.2. RANS of turbulent non-premixed flames
 - 8.3. LES of turbulent non-premixed flames
 - 8.4. DNS of turbulent non-premixed flames
- 9. Flame/wall interactions 2h
- 10. Flame/acoustics interactions -2h
- 11. Detonative combustion 2h

Laboratory

4. Learni	ng outcomes		
	Learning outcomes description	Reference to the learning outcomes of the WUT DS	Learning outcomes verification methods*
	Knowledge		
K01	Conservation equations for multicomponent flows with combustion and their simplification	SD_W2 SD_W3	Written colloquium
K02	Numerical methods of laminar premixed combustion	SD_W2 SD_W3	Written colloquium
К03	Numerical methods of laminar diffusion combustion	SD_W2 SD_W3	Written colloquium
К04	Basic concepts of turbulent combustion modelling	SD_W2 SD_W3	Written colloquium
K05	Models of turbulent premixed flames	SD_W2 SD_W3	Written colloquium

Warsaw University of Technology

			-
К06	Models of turbulent diffusion flames	SD_W2	Written
ROO		SD_W3	colloquium
K07	Models of the interaction of flames with walls	SD_W2	Written
KU7		SD_W3	colloquium
K08	Models of combustion couplings with acoustics	SD_W2	Written
KUð		SD_W3	colloquium
KOO	Detonative combustion	SD_W2	Written
K09		SD_W3	colloquium
	Skills		
S01	Creating a mathematical model of the	SD_U1, SD_U2,	Project evaluation
301	combustion process	SD_U4, SD_U6	Project evaluation
S02	Using numerical simulations to analyze the	SD_U1, SD_U2,	Project evaluation
502	combustion process	SD_U4, SD_U6	
S03	Interpreting the results of numerical simulations	SD_U1, SD_U2,	Project evaluation
505	of combustion	SD_U4, SD_U6	
	Social competences		
SC01		SD_K1	

*Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

The final grade is the result of the evaluation from colloquia and the evaluation of the project (results, report)

6. Literature

Basic literature:

- 1. T.Poinsot, D.Veynante: Theoretical and Numerical Combustion, Third Edition by authors, 2011
- 2. Turbulent Combustion Modeling, Advances, New Trends and Perspectives, T.Echekki and E.Mastorakos Eds., Springer 2011
- 3. R.S.Cant, E.Mastorakos: An Introduction to Turbulent Reacting Flows, Imperial College Press, London, UK (2008)

Supplementary literature:

- 1. R.O.Fox: Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, UK (2003)
- 2. N.Peters: Turbulent Combustion, Cambridge University Press, 2001
- 3. E.S.Oran, J.P.Boris: Numerical simulation of reactive flow, Cambridge University Press, 2001
- 4. R.Borghi: Turbulent combustion modeling, Prog. Energy Comb. Sci., 14(4) 1998
- 5. J.Janicka, A.Sadiki: Large Eddy simulation for turbulent combustion, Proc. Combust. Inst. 30: 537-547, 2004
- 6. H.Pitsch: Large eddy simulation of turbulent combustion, Ann.Rev.Fluid Mech., 38:453-482, 2006
- 7. S.B.Pope: Pdf methods for reactive flows, Prog.Energy Combust.Sci., 19(11), 1985

D.Veynante, L.Vervisch: Turbulent combustiom modeling, Prog.Energy Combust. Sci. 28:196-266, 2002

7. PhD stu	udent's workload necessary to achieve the learning outcomes**	
No.	Description	Number of hours

Warsaw University of Technology

** 4 50	ECTS credits CTS = 25-30 hours of the PhD students work (2 ECTS = 60 hours; 4 ECTS = 110 hours, etc.)	2
	Total number of hours	60
4	Amount of time devoted to the preparation for exams, test, assessments	10
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	10
2	Hours of consultations with the academic teacher, exams, tests, etc.	10
1	Hours of scheduled instruction given by the academic teacher in the classroom	30